Clustering Bird Species with Seasonality

Author

Conor Tompkins

Published

May 3, 2020

In this post, I use k-means clustering to identify clusters of bird species based on frequency of observations per month. I use bird sightings in Allegheny County from eBird.

Load the relevant libraries:

library(tidyverse)
library(lubridate)
library(janitor)
library(vroom)
library(broom)
library(hrbrthemes)

theme_set(theme_bw())

set.seed(1234)

Load and filter the data:

df <- vroom("post_data/ebd_US-PA-003_201001_202003_relFeb-2020.zip", delim = "\t") %>% 
  clean_names() %>% 
  mutate_at(vars(observer_id, locality, observation_date, time_observations_started, protocol_type), str_replace_na, "NA") %>% 
  mutate(observation_count = as.numeric(str_replace(observation_count, "X", as.character(NA))),
         observation_event_id = str_c(observer_id, locality, observation_date, time_observations_started, sep = "-"),
         observation_date = ymd(observation_date)) %>%
  filter(all_species_reported == 1)
df_top_protocols <- df %>% 
  count(protocol_type, sort = TRUE) %>% 
  slice(1:2)

df <- df %>% 
  semi_join(df_top_protocols) %>% 
  filter(year(observation_date) >= 2016)
df %>% 
  select(common_name, observation_date, observation_count) %>% 
  glimpse()
Rows: 533,493
Columns: 3
$ common_name       <chr> "American Black Duck", "American Black Duck", "Ameri…
$ observation_date  <date> 2016-01-31, 2016-01-24, 2016-01-30, 2016-01-31, 201…
$ observation_count <dbl> 2, 2, 2, 3, 2, 3, 57, 7, 2, 4, 1, 5, 8, 1, 1, 4, 1, …

This graph shows general seasonality in bird observations:

df %>% 
  count(observation_date) %>% 
  ggplot(aes(observation_date, n)) +
    geom_line() +
    labs(x = "Observation date",
         y = "Observation events") +
    scale_y_comma()

This code chunk calculates the average number of observations by species and month. Then, it interpolates a value of 0 for birds where there were no sightings in a given month:

months <- df %>% 
  mutate(observation_month = month(observation_date, label = TRUE)) %>% 
  distinct(observation_month) %>% 
  pull(observation_month)

df_seasonality <- df %>% 
  mutate(observation_month = month(observation_date, label = TRUE),
         observation_year = year(observation_date)) %>% 
  group_by(common_name, observation_year, observation_month) %>% 
  summarize(observation_count = sum(observation_count, na.rm = TRUE)) %>% 
  group_by(common_name, observation_month) %>% 
  summarize(observation_count_mean = mean(observation_count) %>% round(1)) %>% 
  ungroup() %>% 
  complete(common_name, observation_month = months) %>% 
  replace_na(list(observation_count_mean = 0)) %>% 
  arrange(common_name, observation_month)

glimpse(df_seasonality)
Rows: 3,672
Columns: 3
$ common_name            <chr> "Acadian Flycatcher", "Acadian Flycatcher", "Ac…
$ observation_month      <ord> Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oc…
$ observation_count_mean <dbl> 0.0, 0.0, 0.0, 0.0, 184.8, 98.5, 67.0, 19.0, 22…

This transforms the mean monthly observation into log10:

df_seasonality <- df_seasonality %>% 
  mutate(observation_count_mean_log10 = log10(observation_count_mean),
         observation_count_mean_log10 = case_when(is.infinite(observation_count_mean_log10) ~ 0,
                                                  TRUE ~ observation_count_mean_log10)) %>% 
  select(-observation_count_mean)

These graphs show that observations generally increase in the spring and fall, but there is wide variation:

df_seasonality %>% 
  ggplot(aes(observation_month, observation_count_mean_log10)) +
    geom_boxplot() +
    labs(x = "Observation month",
         y = "Mean observation count (log10)")

This tile graph shows the seasonality trends per species. I sort the birds by ascending mean observation count by month. It shows there are birds that appear year-round, some that appear seasonally, and some that only appear sporadically:

vec_common_name <- df_seasonality %>% 
  pivot_wider(names_from = observation_month, values_from = observation_count_mean_log10, names_prefix = "month_") %>% 
  clean_names() %>% 
  arrange(month_jan, month_feb, month_mar, month_apr, month_may, month_jun, month_jul, month_aug, month_sep, month_oct, month_nov, month_dec) %>% 
  pull(common_name)
df_seasonality %>%
  mutate(common_name = factor(common_name, levels = vec_common_name)) %>%
  ggplot(aes(observation_month, common_name, fill = observation_count_mean_log10)) +
    geom_tile() +
    scale_fill_viridis_c("Mean observation count (log10)") +
    scale_x_discrete(expand = c(0,0)) +
    scale_y_discrete(expand = c(0,0)) +
    labs(x = "Observation month",
         y = "Species") +
    theme(panel.grid = element_blank(),
          axis.text.y = element_blank(),
          axis.ticks.y = element_blank())

You can subjectively see clusters of bird types in the above graph. I will use k-means to attempt to find those clusters.

This code chunk pivots the data wide to prepare it for clustering:

df_seasonality_wide <- df_seasonality %>% 
  select(common_name, observation_month, observation_count_mean_log10) %>% 
  pivot_wider(names_from = observation_month, values_from = observation_count_mean_log10, names_prefix = "month_") %>% 
  clean_names()

glimpse(df_seasonality_wide)
Rows: 306
Columns: 13
$ common_name <chr> "Acadian Flycatcher", "Accipiter sp.", "Alder Flycatcher",…
$ month_jan   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0…
$ month_feb   <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
$ month_mar   <dbl> 0.0000000, 0.1760913, 0.0000000, 0.0000000, 0.0000000, 0.0…
$ month_apr   <dbl> 0.0000000, 0.3010300, 0.0000000, 0.0000000, 0.0000000, 0.6…
$ month_may   <dbl> 2.2667020, 0.3010300, 0.1760913, 0.4771213, 0.0000000, 0.0…
$ month_jun   <dbl> 1.993436, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000…
$ month_jul   <dbl> 1.8260748, 0.0000000, 0.0000000, 0.4771213, 0.0000000, 0.0…
$ month_aug   <dbl> 1.2787536, 0.0000000, 0.0000000, 0.3979400, 0.9030900, 0.0…
$ month_sep   <dbl> 1.3424227, 0.0000000, 0.0000000, 1.0086002, 1.8450980, 0.0…
$ month_oct   <dbl> 0.0000000, 0.3010300, 0.0000000, 0.0000000, 0.0000000, 0.0…
$ month_nov   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0…
$ month_dec   <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0…

This uses purrr to cluster the data with varying numbers of clusters (1 to 9):

kclusts <- tibble(k = 1:9) %>%
  mutate(
    kclust = map(k, ~kmeans(df_seasonality_wide %>% select(-common_name), .x)),
    tidied = map(kclust, tidy),
    glanced = map(kclust, glance),
    augmented = map(kclust, augment, df_seasonality_wide %>% select(-common_name))
  )

kclusts
# A tibble: 9 × 5
      k kclust   tidied            glanced          augmented          
  <int> <list>   <list>            <list>           <list>             
1     1 <kmeans> <tibble [1 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
2     2 <kmeans> <tibble [2 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
3     3 <kmeans> <tibble [3 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
4     4 <kmeans> <tibble [4 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
5     5 <kmeans> <tibble [5 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
6     6 <kmeans> <tibble [6 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
7     7 <kmeans> <tibble [7 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
8     8 <kmeans> <tibble [8 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
9     9 <kmeans> <tibble [9 × 15]> <tibble [1 × 4]> <tibble [306 × 13]>
clusters <- kclusts %>%
  unnest(tidied)

assignments <- kclusts %>% 
  unnest(augmented)

clusterings <- kclusts %>%
  unnest(glanced)

This scree plot shows that 2 clusters is probably optimal, but 4 could also be useful:

ggplot(clusterings, aes(k, tot.withinss)) +
  geom_line() +
  geom_vline(xintercept = 2, linetype = 2) +
  geom_vline(xintercept = 4, linetype = 2) +
  scale_x_continuous(breaks = seq(1:9)) +
  labs(x = "Number of clusters")

This graph shows how the clustering performed by comparing the observation value in January to the value in the other months, for each k cluster value 1 through 4:

assignments %>% 
  select(k, .cluster, contains("month_")) %>% 
  mutate(id = row_number()) %>% 
  pivot_longer(cols = contains("month_"), names_to = "observation_month", values_to = "observation_count_mean_log10") %>% 
  mutate(month_jan = case_when(observation_month == "month_jan" ~ observation_count_mean_log10,
                               TRUE ~ as.numeric(NA))) %>% 
  group_by(k, .cluster, id) %>% 
  fill(month_jan, .direction = c("down")) %>% 
  ungroup() %>% 
  filter(observation_month != "month_jan",
         k <= 4) %>% 
  mutate(k = str_c(k, "cluster(s)", sep = " ")) %>% 
  ggplot(aes(observation_count_mean_log10, month_jan, color = .cluster)) +
    geom_point() +
    facet_grid(k ~ observation_month) +
    labs(x = "Observation month",
         y = "January")

Subjectively, I think the optimal number of clusters is 4. It is noiser, but could show more interesting granularity in seasonality.

This clusters the data using 4 clusters:

df_kmeans <- df_seasonality_wide %>% 
  select(-common_name) %>% 
  kmeans(centers = 4)
df_clustered <- augment(df_kmeans, df_seasonality_wide) %>% 
  select(common_name, .cluster)

df_clustered
# A tibble: 306 × 2
   common_name                                   .cluster
   <chr>                                         <fct>   
 1 Acadian Flycatcher                            4       
 2 Accipiter sp.                                 3       
 3 Alder Flycatcher                              3       
 4 Alder/Willow Flycatcher (Traill's Flycatcher) 3       
 5 American Avocet                               3       
 6 American Bittern                              3       
 7 American Black Duck                           2       
 8 American Coot                                 2       
 9 American Crow                                 1       
10 American Golden-Plover                        3       
# ℹ 296 more rows

This shows the same style of tile graph as shown previously, but facets it by cluster.

vec_common_name_cluster <- df_seasonality %>%
  left_join(df_clustered) %>% 
  pivot_wider(names_from = observation_month, values_from = observation_count_mean_log10, names_prefix = "month_") %>% 
  clean_names() %>% 
  arrange(cluster, month_jan, month_feb, month_mar, month_apr, month_may, month_jun, month_jul, month_aug, month_sep, month_oct, month_nov, month_dec) %>% 
  pull(common_name)
df_seasonality_clustered <-  df_seasonality %>%
  left_join(df_clustered) %>% 
  mutate(common_name = factor(common_name, levels = vec_common_name_cluster))

df_seasonality_clustered %>% 
  mutate(.cluster = str_c("Cluster", .cluster, sep = " ")) %>% 
  ggplot(aes(observation_month, common_name, fill = observation_count_mean_log10)) +
    geom_tile() +
    facet_wrap(~.cluster, scales = "free_y") +
    scale_fill_viridis_c("Mean observation count (log10)") +
    scale_x_discrete(expand = c(0,0)) +
    scale_y_discrete(expand = c(0,0)) +
    labs(x = "Observation month",
         y = "Species") +
    theme(panel.grid = element_blank(),
          axis.text.y = element_blank(),
          axis.ticks.y = element_blank())

Cluster 1 shows birds that only appear sporadically. I think these are birds that migrate through Allegheny County, but do not stick around. Cluster 2 shows birds that are generally around all year. Cluster 3 shows birds that are seen mostly during the summer, and cluster 4 contains birds that appear in the winter.

This shows a sample of each cluster:

df_cluster_sample <- df_clustered %>% 
  group_by(.cluster) %>% 
  sample_n(10, replace = FALSE) %>% 
  ungroup()

df_seasonality_clustered %>%
  semi_join(df_cluster_sample) %>% 
  mutate(.cluster = str_c("Cluster", .cluster, sep = " ")) %>% 
  ggplot(aes(observation_month, common_name, fill = observation_count_mean_log10)) +
    geom_tile() +
    facet_wrap(~.cluster, scales = "free_y") +
    scale_fill_viridis_c("Mean observation count (log10)") +
    scale_x_discrete(expand = c(0,0)) +
    scale_y_discrete(expand = c(0,0)) +
    labs(x = "Observation month",
         y = NULL) +
    theme(panel.grid = element_blank())